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DESCRIPTION 

Progress is being made in the field of neural decoding for direct communication 

in Brain-Computer Interfaces (BCIs). Current research is dedicated to 

identifying spoken signals through the analysis of multi-channel 

Electrocorticograms (ECoGs) in the brain cortex. If we could instead detect 

linguistic information from Electroencephalograms (EEGs), then BCIs could 

enjoy much wider practical applications, for instance improving the Quality of 

Life (QoL). Efforts to aid Amyotrophic Lateral Sclerosis (ALS) patients face 

numerous unresolved challenges. Although research on spoken 

Electroencephalograms (EEGs) can utilize motor command data for identifying 

speech-related signals, the absence of this advantage in imagined speech 

EEGs (i.e., EEGs recorded during silent, unspoken speech) necessitates the 

exclusive identification of linguistic representations from within the EEG. 

In this paper, we propose a model of encoding and decoding for linguistic 

information L(k), k; frequency. The encoding process convolves an input 

spectrum of random signal W(k) and L(k) and outputs an EEG spectrum X(k). In 

the decoding procedure, the EEG spectrum X(k) undergoes analysis through an 

inverse filter H(k) within a feedback loop, incorporating L(k). Linear Predictive 

Analysis (LPA) is applied to analyze imagined speech EEGs around the Broca 

area. The LPA spectrum patterns are converted to line-spectra that become 

closer to symbolic forms. 

Because there is no reference EEG signal corresponding to the exact moment the speech was imagined (that is, spoken silently 

in the human subject's mind), our goal is to identify the locations and patterns within the multi-channel EEG signal that 

represent phones or phrases. Through an examination of numerous EEG line-spectra related to phones, words, and sentences, 

we have discovered that integrating (or pooling) multi-channel data reveals distinct chunks of open syllables. Specifically, 

consonant-vowel combinations, or CVs, with durations ranging from 7 to 9 frames (56 to 72 (ms)), become evident. 

Additionally, these CVs can be categorized as monosyllables. 

Principal Component Analysis (PCA) is employed to search and reconstruct a collection of vowel spectra {X(k)}, providing a 

visualization of linguistic information through eigen-vectors φ(m). Additionally, the Subspace Method (SM) is utilized to explore 

the suitable spectra of vowels, facilitating the recomposition of {X(k)} and the redesign of the eigen-vector set. This iterative 

search is repeated 4 times, then the last eigen-vector set of each vowel Ψ(v, m); v=a, e, i, o, u is fixed. The eigen space Ψ(v, 

m) contains the linguistic representation of vowels, and we can observe it in a visible form by calculating the referencing vector
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G(v) that is the accumulated spectrum with the weight λ (m)/λ (1).  

The magnitude of the eigen-value λ(m) signifies its contribution to G(v). Notably, the presence of two spectral peaks (P1, P2) 

in the higher frequency range of G(v) brings to mind the two formant frequencies (F1, F2) observed in audio spectra of spoken 

vowels. It is worth mentioning that the five vowels in the P1-P2 scatter plot approximately align along a line, whereas cardinal 

vowels in an F1-F2 plot for spoken speech typically form a quadrilateral. 

We employed a jack-knife technique, utilizing four out of the five human subjects as training data, while the remaining one 

human subject served as the test data. This process of training and testing was iteratively repeated by alternating training and 

test data for all human subjects, leading to cross-validation. Across 5 human subjects (that is, 1425 x 4=5700 samples for 

training, and 1425 x 1=1425 samples for testing). Each human subject imagined speech data set of 57 Japanese short 

syllables. The classifier, based on Convolutional Neural Networks (CNNs), achieved an average recognition accuracy of 72.6% 

for vowels in imagined speech. 

To enhance the interpretation of linguistic patterns in EEG signals, our objectives include (a) extracting consonantal data, (b) 

enhancing the accuracy of vowel and consonant recognition, partially achieved through the expansion of imagined speech 

datasets, and (c) developing decoding modules for isolated words and/or connected phrases, catering specifically to 

applications in Brain-Computer Interface (BCI) technology. 


