-
B. Samet, “ Coupled fixed point theorems for a generalized Meir-Keeler Contraction in partially ordered metric spaces”, Nonlinear Anal., vol.72, 2010, pp. 4508-4517.
-
B.S. Choudhury, A. Kundu, “A coupled coincidence point result in partially ordered metric spaces for compatible
-
mappings”, Nonlinear Anal., vol. 73,no.8, 2010, pp.2524-2531.
-
D.Doric Rade, Lazovic,Some “ Suzuki-type fixed point theorems for generalized multivalued mappings and applications”, Fixed point theory and Applications, vol. 2011, 2011 , 1/40, 8 pages.
-
D.Doric, Z.Kadelburg, S.Radenovic, “Edelstein-Suzuki type fixed point results in metric and abstract metric spaces”, Nonlinear Analysis TMA, vol. 75, 2012, pp. 1927-1932.
-
D.Paesano, Pasquale Vetro, “Suzuki’s type characterizations of com- pleteness for partial metric spaces and fixed points for partially ordered metric spaces”, Topology and its Applications, vol. 159, 2012, pp. 911-920.
-
E. Karapinar, “Couple fixed point theorems for nonlinear contractions in cone metric spaces”, Comp. Math. Anal., vol. 59, 2010, pp. 3656 -3668.
-
E. Karapinar, “Couple fixed point on cone metric spaces”, Gazi Univ. J.Sci., vol. 24, no. 1, 2011, p p . 51-58.
-
E.Karapinar, “Edelstein type fixed point theorems”, Ann. Funct. Anal., vol. 2, no. 1, 2011, pp.51-58.
-
F. Sabetghadam, H.P. Masiha, A.H. Sanatpour, “ Some coupled fixed point theorems in cone metric spaces”, Fixed Point Theory Appl., vol .2009, 2009, Article ID 125426, 8 pages.
-
H. Aydi, “Some coupled fixed point results on partial metric spaces”. International Journal of Mathematics and Mathematical Sciences, vol. 2011, 2011, Article ID 647091, 11 pages.
-
H. Aydi, E. Karapinar, W. Shatnawi, “ Coupled fixed point results for (φ − ψ) - weakly contractive condition in ordered partial metric spaces”, Comput. Math. Appl., vol. 62 no. 12 2011, pp. 4449 – 4460.
-
H.S. Ding , L. Li, “ Coupled fixed point theorems in partial ordered cone metric spaces”, Filomat, vol . 25, no. 2, 2011, pp. 137-149.
-
I.Altun , Ali Erduran, “ A Suzuki type fixed point theorem”, Internat. Math. Math. Sci., vol. 2011, Article ID 736063, 9 pages.
-
K.P.R.Rao, S.Hima Bindu, Md.Mustaq Ali, “Coupled fixed point theorems in d-Complete topological spaces”, J.Nonlinear Sci.Appl. , vol. 5, 2012, pp. 186 -194.
-
K.P.R.Rao , K.R.K.Rao , Erdal Karapinar , “ Common coupled fixed point theorems in d-complete topological spaces”, Ann. Funct. Anal., vol.3, no.2, 2012, pp. 107-114
-
K.P.R.Rao, G.N.V.Kishore, V.C.C.Raju, “ A coupled fixed point theorem for two pairs of W-compatible maps using altering distance function in partial metric spaces,” Journal of Advanced Research in Pure Mathematics , vol .4, Issue 4, 2012, pp. 96- 114.
-
M. Abbas, M. Ali Khan, S. Radenovic, “ Common coupled fixed point theorems in cone metric spaces for w-compatible mappings”, Appl. Math. Comput., vol . 217, 2010, p p . 195-202.
-
M.Aggarwal, Renu Chugh, Raj Kamal, “Suzuki type fixed point results in G-metric spaces and Applications”, International Journal of Computer Applications, vol. 47, no. 12 , 2012, pp. 14-17.
-
M.Kikkawa , T.Suzuki, “ Some similarity between contractions and Kan nan mappings, Fixed Point Theory Appl., vol. 2008 , 2008, 8 pages.
-
M.Kikkawa, T.Suzuki, “Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Analysis , vol.69, 2008, pp. 2942-2949.
-
N.Hussain, D.Doric, Z.Kadelburg , S.Radenovic, “Suzuki type fixed point results in metric type spaces, Fixed point theory and Applications, vol. 2012, 2012:126, 15 pages.
-
N.V. Luong, N.X. Thuan, “Coupled fixed point theorems in partially ordered metric spaces”, Bull. Math. Anal.
-
Appl., v o l . 2 , no. 4 , 2010, p p . 16-24.
-
N. V. Luong , N. X. Thuan, “Coupled fixed points in partially ordered metric spaces and application”, Nonlinear Analysis. Theory, Methods and Applications, vol. 74, no. 3, 2011, 983 -992.
-
Popescu O, Two fixed point theorems for generalized contractions with constants in complete metric spaces”, Cent. Eur. J. Math., vol. 7 , 2009, pp., 529-538 .
-
Renu Chugh, Raj Kamal , Madhu Aggarwal, “Properties P and Q for Suzuki type fixed point theorems in metric spaces”, International Journal of Computer Applications, vol. 50, no. 1, 2012, 44-48.
-
R.K.Bose, M.K.Roy Chowdhury, “Fixed point theorems for some generalized contractive multi valued mappings and fuzzy mappings”, Math Vesnik, vol. 63, no. 1, 2011, pp. 7-26.
-
S.L.Singh, H.K.Pathak, S.N.Mishra, “ On a Suzuki type general fixed point theorem with applications”, Fixed point theory and Applications, vol.2010, Article ID 234717, 15 pages.
-
S.L.Singh, S.N.Mishra, Renu Chugh, Raj Kamal, “General common fixed point theorems and applications”, Journal of Applied Mathematics, vol. 2012, 2012, Article ID 902312, 14 pages.
-
T.G.Bhaskar , V.Lakshmikantham, “ Fixed point theorems in partially ordered cone metric spaces and applications”, Nonlinear Analysis: Theory,methods and Applications, 65(7)(2006),825-832.
-
T. Gnana Bhaskar, V. Lakshmikantham, “ Fixed point theorems in partially ordered metric spaces and applications”,
-
Nonlinear Analysis. Theory, Methods and Applications, vol. 65, no. 7, 2006, p p . 1379-1393.
-
T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness”, Proceedings of the American Mathematical Society, vol. 136, no. 5, 2008 , pp. 1861-1869.
-
T.Suzuki, “A new type of fixed point theorem in metric spaces”, NonlinearAnalysis TMA, vol. 71, 2009, pp. 5313 -5317.
-
V. Lakshmikantham, L. C iric, “Coupled fixed point theorems for non- linear contractions in partially ordered metric spaces”, Nonlinear Analysis. Theory, Methods and Applications, vol. 70, no. 12, 2009, p p . 4341- 4349.
-
W. Shatanawi, “Coupled fixed point theorems in generalized metric spaces, Hacettepe Journal of Mathematics and
-
Statistics, vol. 40, no. 3, 2011, pp. 441- 447.
-
W. Shatanawi, B. Samet, M. Abbas, “ Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces”, Mathematical and Computer Modelling, vol. 55 , 2012, 680 - 687.
-
W. Shatanawi, “On w-compatible mappings and common coupled coincidence point in cone metric spaces”, Applied Mathematics Letters, vol. .25, no. 6, 2012, pp. 925 - 931.
|