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ABSTRACT: Designing control systems for complete plants is the ultimate goal of a control designer. The problem is quite 
large and complex. It involves a large number of theoretical and practical considerations such as quality of controlled 
response; stability; the safety of the operating plant; the reliability of the control system; the range of control and ease of 
startup, shutdown, or changeover; the ease of operation; and the cost of the control system. The difficulties are aggravated 
by the fact that most of the industrial and chemical processes are largely nonlinear, imprecisely known, multivariable 
systems with many interactions. The measurements and manipulations are limited to a relatively small number of variables, 
while the control objectives may not be clearly stated or even known at the beginning of the control system design. Thus, 
the  presence of process input-output time delay of different magnitude in multi-input-multi-output systems have drawn 
attention to research as the processes are difficult to control. Increase in complexity and interactions between inputs and 
outputs yield degraded process behavior. Such processes are found only in process industries as they arise from the design 
of plants that are subject to rigid product quality specifications, are more energy efficient, have more material integration, 
and have better environmental performance. Multivariable systems contain more than one controlled variable (outputs) or 
manipulated variables (inputs). Thus the control of these MIMO systems plays a major role and has been interesting various 
engineers in the recent years. In process control industries, more than 95% of the control loops are of PI/PID type. This is 
mainly attributed to its effectiveness and relatively simple structure, which can be easily understood and implemented in 
practice. Consequently, the research on PID control algorithm development and their applications is still a very active area; 
many formulas have been derived to tune the PID controllers over the years. For easier field implementation, it is desirable 
to apply well established single loop PID tuning principles to the MIMO processes. However, compared with single-input 
single single-output (SISO) counterparts, MIMO systems are more difficult to control due to the existence of interactions 
between input and output variables. Adjusting controller parameters of one loop affects the performance of the others, 
sometimes to the extent of destabilizing the entire system. To ensure stability, many industrial controllers are tuned loosely, 
which causes inefficient operation and higher energy costs. Thus, an efficient design methodology which ensures both the 
plant stability as well as the increased productivity is the need of the hour. 
 

I.OBJECTIVE 
In recent years all the methodologies adapted to solve for the parameters of individual controllers in which the loop 
interactions are taken into account have not guaranteed a solution. In addition, the extension for higher dimensional systems 
seems difficult because of the complicated and non-linear computation. It has been found that the independent design of 
decentralized controllers based on model based method is simple and effective only for low dimensional processes. For 
high dimensional processes this design has to be more conservative due to the inevitable modeling errors encountered in 
formulation.  
To overcome all these drawbacks and to include interactions in the control design, a novel method based on the equivalent 
transfer function method (ETF) is proposed. By considering four combination modes of gain and phase changes for a 
particular loop when all other loops are closed, this equivalent transfer function can effectively approximate the dynamic 
interactions among loops. Consequently, the design of decentralized controller for MIMO processes can be converted to the 
design of single loop controllers. The method is simple, straightforward, easy to understand and implement. Several 
multivariable industrial processes with different interaction characteristics are employed to demonstrate the effectiveness 
and simplicity of the design method compared to the existing methods. 
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II.CONTROLLER DESIGN FOR MULTIVARIABLE SYSTEMS 

The presence of multiple controlled outputs and multiple manipulated inputs creates a situation that offers more than one 
possible control configuration for a MIMO process. But the development of the more concise method which is feasible for 
all processes is more important. 
 

III.CONTROLLER DESIGN METHODOLOGIES 
There are three major controller designs that are available. They are mainly  

a) Centralized controller 
b) Decentralized controller and 
c) Decoupler 

Of all the three configurations discussed above, the centralized controller is not used very widely because of the complexity 
and time constraints in computation. In addition to it the design is less transparent and can be damaging the entire plant 
during failures, thus not being highly reliable. The figure below shows the block diagram of a decentralized controller and 
with its representation. 
 
 
  
 
 
 
 
 
 

Figure 1: Centralized Control 

 
The decoupler though profitable and realistic is also very complex and degrades the load rejection. It has to be applied 
carefully and is often recommended only for the servo operations. The Figure 2 shows the block diagram for the decoupler. 
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Figure 2: Decoupling Controller Design 
 
The Decentralized controllers are widely used because of their simplicity in hardware, design and tuning simplicity, 
flexibility in operation and maintenance. 
The block diagram of the decentralized controller is shown in figure 3. The decentralized controller is represented as 
 
  
 
  
 
 
 
 
 
 
 
 

Figure 3: Decentralized controller design 
 
 
 
 
 
 
 
 
 
 
 
 
All the three controller configurations are being shown for a 2x2 system with interactions. The decentralized controllers 
consist of multi loop SISO controllers with one control variable paired with one manipulated variable. The major idea in 
this design approach is that the SISO controllers should be tuned simultaneously with the interactions in the process taken 
into account. 
 

III. FOR DECENTRALISED CONTROLLER DESIGN 
Most industrial control systems use the multi loop SISO diagonal control structure. 
It is the most simple and understandable structure. Operators and plant engineers can use it and modify it when necessary. It 
does not require an expert in applied mathematics to design and maintain it. In addition, the performance of these diagonal 
controller structures is usually quite adequate for process control applications. In fact, there has been little quantitative 
unbiased data showing that the performances of the more sophisticated controller structures are really any better! The slight 
improvement is seldom worth the price of the additional complexity and engineering cost of implementation and 
maintenance. 
A number of critical questions must be answered in developing a control system for a plant. What should be controlled? 
What should be manipulated? How should the controlled and manipulated variables be paired in a multivariable plant? How 
do we tune the controllers? It was developed to provide a workable, stable, simple SISO system with only a modest amount 
of engineering effort. The resulting diagonal controller can then serve as a realistic benchmark, against which the more 
complex multivariable controller structures can be compared. The limitations of the procedure should be pointed out. It 
does not apply to open loop-unstable systems. It also does not work well when the time constants of the transfer functions 
are quite different, i.e., some parts much faster than others. 
The fast and slow sections should be designed separately in such a case. The procedure has been tested primarily on 
realistic distillation column models. 
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This choice was deliberate because most industrial processes have similar gain, dead time, and lag transfer functions. 
Undoubtedly, some pathological transfer functions can be found that the procedure cannot handle.  
The steps in the procedure are summarized below.  
1. Select controlled variables. Use primarily engineering judgment based on process understanding. 
2. Select manipulated variables. Find the set of manipulated variables that gives the largest minimum singular value of the 
steady-state gain matrix. 
3. Eliminate unworkable variable pairings. The pairing can be done with RGA ERGA or using NI indices. 
4. Find the best pairing from the remaining sets. 
a. Tune all combinations using a efficient tuning methodology. 
b. Select the pairing that gives the lowest-magnitude closed loop regulator transfer function. 
 
 

IV.COMPUTATION OF EFFECTIVE TRANSFER FUNCTION 
Consider an open loop stable multivariable system within inputs and n outputs as shown in Fig. 1, where  ݎ௜ , ݅ =1, 2, . . . ,n, 
are the reference inputs;  ݑ௜ , ݅ = 1,2,. . . ,n, are the manipulated variables;  ݕ௜ , ݅ = 1,2,. . . ,n, are the system. Outputs, G(s) 
and  ܩ௖(ݏ) are process transfer function matrix 
And decentralized controller matrix with compatible dimensions, expressed by 
 

 
 

Figure 4:  Closed-loop multivariable control system. 
 

(ݏ)ܩ = ൦

݃ଵଵ(ݏ) ݃ଵଶ(ݏ) … ݃ଵ௡(ݏ)
݃ଶଵ(ݏ) … … ݃ଶ௡(ݏ)

… ⋯ … …
݃௡ଵ(ݏ) ݃௡ଶ(ݏ) … ݃௡௡(ݏ)

൪ 

 
And 

 

(ݏ)௖ܩ = ൦

݃௖ଵ(ݏ) 0 … 0
0 ݃௖ଶ(ݏ) … 0
… ⋯ … …
0 0 … ݃௖௡(ݏ)

൪ 

 
respectively. 
 
Let                          ݃௜௝(݆߱) = ݇௜௝݃௜௝଴ (݆߱), 
 
Where ݇௜௝  and ݃௜௝଴ (݆߱),are steady state gain and normalized transfer function of ݃௜௝(݆߱),i.e., ݃௜௝଴ (0) = 1 , respectively. The 
interaction among individual loop is described by ERGA, the main result of ERGA is summarized as follows. 
Define ݁௜௝ of a particular transfer function as 

  



ISSN 2278 - 8875 
 

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 
                                   Vol. 1, Issue 4, October  2012 
 

Copyright to IJAREEIE                                                            www.ijareeie.com                                                                            222          
 
                                                                             

 ݁௜௝ = ݇௜௝ න ห݃௜௝଴ (݆߱)ห  ݀߱,
ఠ೎,೔ೕ

଴
 

where ߱௖,௜௝for i,j = 1,2,. . . ,n are the critical frequency of the transfer function ݃௜௝(݆߱) and |∎|is the absolute value of ∎. In 
order to calculate ݁௜௝ , the critical frequency can be defined in two ways: 
 
߱௖,௜௝  = ߱஻,௜௝, where ߱஻,௜௝for i,j = 1,2,. . . ,n is the bandwidth of the transfer function ݃௜௝଴ (݆߱) and determined by the 
frequency where the magnitude plot of frequency response reduced to 0.707 time, i.e., 
ห݃௜௝(݆߱஻,௜௝)ห = 0.707ห݃௜௝(0)ห. 
 
߱௖,௜௝  = ߱௨,௜௝, where ߱௨,௜௝for i,j = 1,2,. . . ,n is the ultimate of the transfer function ݃௜௝଴ (݆߱) and determined by the frequency 
where the phase plot of frequency response across -ߨ, i.e., 
௜௝(݆߱௨,௜௝)൧݃ൣ݃ݎܽ =  .ߨ−
 
For transfer function matrices with some elements without phase crossover frequencies, such as first order or second order 
without time delay, it is necessary to use corresponding bandwidths as critical frequencies to calculate ݁௜௝ .However, it is 
worth to point out that the phase crossover frequency information, i.e., ultimate frequency (߱௨,௜௝) is recommended if 
applicable for calculation of ݁௜௝ , since it is closely linked to system dynamic performance and control system design. 
Without loss of generality, we will use ߱௨,௜௝  as the bases for the following development. 
 
For the frequency response of ݃௜௝(݆߱) as shown in Fig. 5, ݁௜௝is the area covered by  ݃௜௝(݆߱) up to ߱௨,௜௝.  Sinceห݃௜௝଴ (݆߱)ห 
represents the magnitude of the transfer function at various frequencies, ݁௜௝is considered to be the energy transmission ratio 
from the manipulated variable ݑ௝to the controlled variable  ݕ௜. 
Express the energy transmission ratio array as 
 

ܧ = ൦

݁ଵଵ ݁ଵଶ … ݁ଵ௡
݁ଶଵ … … ݁ଶ௡
… ⋯ … …
݁௡ଵ ݁௡ଶ … ݁௡௡

൪ 

 
To simplify the calculations, we approximate the integration of ݁௜௝ by a rectangle area, i.e., 

݁௜௝ ≈ ݇௜௝߱௨,௜௝    i,j = 1,2,.....,n. 
 
Then, the effective energy transmission ratio array is given as: 

 
ܧ = G(0)⊗ Ω, 

 
 

V.DECENTRALISED CONTROL SYSTEM DESIGN 
Without loss of generality, we assume that each main loop, i.e., diagonal element in the transfer function matrix is 
represented by a second order plus dead time (SOPDT) model, which can be used to describe most of the industrial 
processes: 
 

݃௜௜(ݏ) =
ܾ଴,௜௜

ܽଶ,௜௜ݏଶ + ܽଵ,௜௜ݏ + 1 ݁
ିௗ೔೔௦ 

 
Similarly, ETF is represented as, 
 

 ෝ݃ ௜௜(ݏ) =
 ෝ݃ ௜௜(0)

ܽଶ,௜௜ݏଶ + ܽଵ,௜௜ݏ + 1 ݁
ିௗ෠೔೔௦ 
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The decentralized controllers can then be independently designed by single loop approaches based on the corresponding 
ETFs. Here we employ the gain and phase margins approach. This is primary because the frequency response method 
provides good performance in the face of uncertainty in both plant model and disturbances. 
The PID controller of each loop is supposed of the following standard form: 
 

݃௖,௝(ݏ) = ݇௣,௜ +
݇௜,௜
ݏ + ݇௣,௜ݏ 

 
The controller can be rewritten as 
 
 

݃௖,௝(ݏ) =
݇௜,௜ + ݇௣,௜ݏ + ݇ௗ,௜ݏଶ

ݏ =
ଶݏܣ + ݏܤ + ܥ

ݏ , 
 
 
Where A=௞೏,೔

௞
 , B=

௞೛,೔

௞
, c=௞೔,,೔

௞
     By selecting A=ܽଶ, B=ܽଵ , C=1, the open loop transfer function becomes 

݃௖,௝(ݏ) ෝ݃ ௜௜(ݏ) = ݇
 ෝ݃ ௜௜(0)
ݏ ݁ିௗ෠೔೔௦ 

Denoting the gain and phase margin specifications as  ܣ௠,௜ and   ߰௠,௜  and their crossover frequencies as and ߱௣,௜ , 
respectively, we have 
 
௖,௜൫݆߱௚,௜݃ൣ݃ݎܽ ,൯ ෝ݃ ௜௜൫݆߱௚,௜,൯൧ =  ,ߨ−
௠,௜ห݃௖,௜൫݆߱௚ܣ ,௜,൯ ෝ݃ ௜௜൫݆߱௚,௜ ,൯ห = 1, 

ห݃௖,௜൫݆߱௣,௜௨,௜௝,൯ ෝ݃ ௜௜൫݆߱௣,௜,൯ห = 1, 
  ߰௠,௜ = ߨ + ௖,௜൫݆߱௨,௜௝,൯ ෝ݃݃ൣ݃ݎܽ  ௜௜൫݆߱௨,௜௝,൯൧. 
 
By substitution and simplification to above equations, we obtain 
߱௚,௜, መ݀௜௜ = గ

ଶ
௠,௜ܣ                                     = 

ఠ೒,೔,

 ௚ෝ ೔೔(଴)௞
   , 

 ෝ݃ ௜௜(0)݇ = ߱௣,௜,                               ߰௠,௜ = గ
ଶ
−߱௚,௜, መ݀௜௜, 

 
Which results 

                         ߰௠,௜ = గ
ଶ
൬1− ଵ

஺೘,೔
൰,        ݇ = గ

ଶ஺೘,೔ௗ෠೔೔ ௚ෝ ೔೔(଴) 

 
By this formulation, the gain and phase margins are interrelated to each other, some possible gain and phase margin 
selections are given in Table 1. 
The PID parameters are given by  
 

቎
݇௣,௜
݇௜,௜
݇ௗ,௜

቏ = గ
ଶ஺೘,೔ௗ෠೔೔ ௚ෝ ೔೔(଴)

൥
ܽଵ,௜௜

0
ܽଶ,௜௜

൩                                           (8) 

 
Applying Eq. (8) for each case discussed in Section 3, we can easily obtain both ETFs and the PID parameters which are 
summarized in Table 2. 
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Table  3: 
Controllers for Example 1 

Controller Proposed Xiong and Cai 

Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ 
Loop 1 0.0117 4 0.0233 4 

Loop 2 0.0550 5 0.1094 5 

 
It can be seen that the proposed method results in better performance with a lesser value of peak overshoot and minimized 
oscillations.   
Example 2: 
Consider an industrial-scale polymerization reactor given by  

(ݏ)ܩ =

⎣
⎢
⎢
⎡22.89݁ି଴.ଶ௦

ݏ4.572 + 1
−11.64݁ି଴.ସ௦

ݏ1.807 + 1
4. 689݁ି଴.ଶ௦

ݏ2.174 + 1
5.80݁ି଴.ସ௦

ݏ1.801 + 1 ⎦
⎥
⎥
⎤
 

The time scales are in hours, so it is a quite slow process. In addition, it is easy to verify that it is not diagonally dominant. 
The RGA, ERGA, CFA and RFA are computed and shown below. 

G (0) =ቂ22.89 −11.64
4.689 5.80 ቃ 

 
Λ= G (0).* [G(0)]ି் 

 
Λ=ቂ૙.ૠ૙ૡૠ ૙.૛ૢ૚૜

૙.૛ૢ૚૜ ૙.ૠ૙ૡૠቃ 
 

The Critical Frequency Array is computed by determining the cross over frequency for the transfer functions describing the 
process. The cross over frequency for ܩଵଵ is found to be 8.0554 from the following figure [12]. The same procedure is 
performed for each element in G(s) to determine the CFA. 
 

 
Figure 12 
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Thus the CFA is given as 
Ω= ቂૡ.૙૞૞૝ ૝.૚ૡૡૡ

ૠ.ૡ૞૝૙ ૝.૜૙૜૟ቃ 
 
The ERGA is computed as shown below 

E=G (0).* Ω 
 
Thus  

E = ቂ184.3873 −48.7575
36.8273 24.9606 ቃ 

 
Φ=E.*[E]ି୘ 

 
Φ=ቂ૙.ૠ૚ૢ૜ ૙.૛ૡ૙ૠ

૙.૛ૡ૙ૠ ૙.ૠ૚ૢ૜ቃ 
 

The Relative Frequency Array can be obtained by performing the Hadamard division of ERGA by RGA. The RFA was 
found to be, 
 

Γ=ቂ૚.૙૚૞૚ ૙.ૢ૟૜૜
૙.ૢ૟૜૜ ૚.૙૚૞૚ቃ 

 
Both ERGA and RGA indicate diagonal pairing. This process falls under the case 2 and according to ETF method the 
equivalent process for the two loops are calculated as  
 

ଷଶ.ଷ଴଴ଷ ௘షబ.మబయబೞ

ସ.ହ଻ଶ௦ାଵ
 and  ଼.ଵ଼ସସ ௘షబ.రబలబೞ

ଵ.଼଴ଵ௦ାଵ
 

 
The PI controllers are determined with the proposed method and the response is compared with ETF method, RGA based 
tuning approach by Chien et al, BLT tuning approach by Luyben and the relay based auto-tuning approach proposed by 
Loh et al. The controller values computed are tabulated below. 
 
Table 4: 
Controllers for Example 2 

Controller Proposed Xiong and Cai Luyben Chien et al. Loh et al. 

Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ 
Loop 1 0.2109 4.5720 0.2190 4.5720 0.210 2.26 0.263 1.42 0.620 0.60 

Loop 2 0.1640 1.8010 0.1703 1.8010 0.175 4.25 0.163 1.77 0.247 1.78 

 
 

Figure 13 : Closed loop response for example 2 
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Table 6  
Controllers for Example 4 

Controller Proposed Xiong and Cai BLT ZN Emprical Sequential 
tuning 

Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ Kp୧୧ τ୍୧୧ 

Loop 1 -0.50 7 -0.94 7 -1.07 7.1 -2.4 3.2 -2.4 3.2 -1.4 3 

Loop 2 0.52 9.2 0.98 9.2 1.97 2.6 4.5 1.2 4.4 1.2 3.4 1.33 

 
 
 
 
 
 
 
 
 
 
 
 

                                  Q Xiang W-J CAi 
                                    Luyben 
                                   Chien et al. 
                                    Loh et al. 
                                    Proposed 
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Figure 17 
Closed loop response of VL column 

 
 

 
 
The peak overshoot is fairly reduced in the proposed method with minimized oscillations and a better settling time. 
 

VI.CONCLUSION 
Effective transfer function approach is a novel method for decentralized control system design of multivariable interactive 
processes. An extension of the effective transfer function approach by taking into consideration all the interactions was 
proposed and implemented successfully with improved responses. The simplicity and effectiveness of the method is based 
on the incorporation of the interaction frequency directly in the controller design. This approach ensures that all the 
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necessary information of the gain and interaction frequency changes are provided. The decentralized controllers are 
obtained by simply using the single loop design approaches. Simulation results for the four 2x2 processes and a 3x3 process 
show that the proposed method provides a better overall performance compared to the other design approaches even after 
taking into account the interactions. The advantage of this method is more significant when applied to higher dimensional 
processes with complicated interaction modes. Since this is an extension of the ETF approach, it can also be easily 
integrated into an auto-tuning control structure. This method can also be successfully tested for the other MIMO processes. 
Also employment of BLT tuning after obtaining the effective transfer function can also be performed for better results. 
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