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Introducing CARATE: Finally speaking chemistry
through learning hidden wave-function representations
on graph-based attention and convolutional neural
networks†

Julian M. Kleber,∗a

Computer-aided drug design is stepping into a new era. Recent developments in statistical modelling,
including deep learning, machine learning and high-throughput simulations, enable workflows and
deductions unachievable 20 years ago. The key interaction for many small molecules in the context
of medicinal chemistry is via biomolecules. The interaction between a small molecule and a biological
system therefore manifests itself at multiple time and length scales. While the human chemist may
often grasp the concept of multiple scales intuitively, most computer technologies do not relate
multiple scales so easily. Numerous methods that try to tackle multiple scales in the realm of
computational sciences have been developed. However, up to now it was not clear that the problem
of multiple scales is not only a mere issue of computational abilities but even more a matter of accurate
representation. Current representations of chemicals lack the descriptiveness necessary for today’s
modelling questions. This work introduces a novel representation of small and large molecules. The
representation is obtained by the novel biochemical and pharmaceutical encoder
following work, the regression and classification abilities of the learned representation by CARATE are
evaluated against benchmarking datasets (ZINC, ALCHEMY, MCF-7, MOLT-4, YEAST, ENZYMES,
PROTEINS) and compared to other baseline approaches. CARATE outperforms other graph-based
algorithms on classification tasks relating to large biomolecules and small molecules, as well as on
quantum chemical regression tasks of small molecules.

1 Introduction
The wish to accurately predict the outcome of a drug develop-
ment process is as old as the regulated pharmaceutical industry
itself. However, the task of simulating a drug interaction in the
body is a multiscale problem operating on more than two scales.

Up to now, no accurate method has been found to model the
whole life cycle of an active pharmaceutical ingredient (API) in-
side a mammal. The general work on multiscale problems focuses
on different aspects of the systems at multiple scales and strives
to represent the relevant aspects of a specific scale accurately by
means of that particular scale. The simulator then decides on ap-
parently unimportant parts of that scale and approximates them
more efficiently by employing methods more commonly used at a
larger scale1.

The problem of multiple scales shows us that our current level
of theory does not handle the notion of multiple scales well
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enough to match our computational abilities. Therefore, each
multiscale modelling attempt is doomed to fail using our current
technology alongside our current state of theoretical physics de-
scribing the dynamics of the system.

Because of the number of already performed simulations at
various scales, deep learning (DL) becomes a viable approach
for speeding up computations by approximating simulations in
a data-driven way.

Yet the current representation of chemicals (SMILES, InChI and
Lewis-like structures) cannot be suitable for modelling because
they are themselves abstractions. Even more problematically, the
original SMILES algorithm was claimed to be unique2, but was
later proven to be non-unique3. It is impossible for fingerprints
and SMILES strings to represent a wave function properly and so
methods using these representations are doomed to fail.

The recent surge in application of SMILES for use in DL4–9

leaves doubts about the applicability of the derived models. On
the contrary, large matrix representations are mostly inaccurate
while being resource intense10. To accurately approximate the
physical (simulated) properties of a given compound, a more ac- Journal Name, [year], [vol.],1–10 | 1
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curate, uniform representation is necessary.

When different length and time scales are involved, compu-
tationally expensive methods for the small-length scale may be-
come infeasible. For example, to model the interaction of a
small molecule with a receptor, at the moment one needs to com-
bine quantum chemistry (QC) with classical molecular mechanics
(MM).

The computations performed by the QM/MM approximation
still have the QC calculations as a bottleneck. However, recent
advances in DL are making the prediction of a particular simu-
lation scale accessible11,12. Recently the prediction of quantum
chemical properties with deep-learning methods became more ac-
curate13 leading to MD simulations using learned coupled-cluster
potentials14.

Implicit methods might thus solve the equation much more effi-
ciently and accurately. To speed up the computation of a QM/MM
simulation, the QC computations should be approximated by pre-
dicting the desired properties via machine learning methods15.

There are several exceptional graph neural networks reported
on the PROTEINS and ENZYMES dataset which have gained good
scores16–18. The most prominent ones are hierarchical struc-
ture methods employing convolutional layers as well as message-
passing layers19,20.

The clustering methods have also been achieving high accura-
cies on the PROTEINS and ENZYMES data set (no test set), and
high accuracies on the QM family have been reported20.

For example, Chen et al. report a similar algorithm to CARATE
(this work) developed during the same time, but omit results on
large datasets, which they used to pretrain their algorithm9.

Moreover, there is a report of a hyperparameter scan for meta-
learning graph models that shows a good fitting of the PROTEINS
dataset of 73.8%21. However, the performance does not seem to
be satisfactory.

Moreover, in the original GAT paper, the authors did not fit
the algorithm on either of the ENZYMES or PROTEINS datasets
although they achieved good results on the protein-interaction
dataset (PPI)22. The PPI data set, however, is minimal and may
not be representative for any fitting behavior.

Yet graph-based methods do not reach the accuracy neces-
sary for accurate simulation because all methods neglect self-
interaction, a foundational quantum mechanical principle. Either
the graph-based algorithm ignores self-interaction, or the given
input neglects self-interaction.

The current graph-based methods thus lead to an already
flawed ground truth and are doomed to fail. Therefore, what
most methods have in common is that they try to incorporate
quantum-chemical principles but are missing the self interaction
terms.

Presently, it is barely possible to perform simulations of de-
cent size and complexity on edge devices or personal computers.
Typically, the equipment involved consists of nodes on a high-
performance cluster. The fact that only insiders can access high-
performance clusters gives rise to an ever more arcane elite of
practitioners. A problem chemistry was facing since its birth in
alchemy.

Fig. 1 General architecture of the CARATE network used for classification
and regression tasks.

A novel method equipped with algorithms of outstanding per-
formance might lead to a new era of edge simulations to enable
scientists, as well as to accelerate and democratize progress in the
natural and life sciences.

Until now, however, to the best of my knowledge, no algorithm
with short training times and competitive prediction abilities on
edge devices has been reported.

This work investigates whether deep-learning methods can be
exploited to solve the time-independent Schrödinger equation in-
stead of bypassing it via predictions. The working idea is to use
molecular graphs, encode them into a wave function and decode
them subsequently such that the eigenvalue equation 2 is solved.

Under the hood, molecular graphs are adjacency matrices that
can be equipped with more features through multiple annotation
matrices, such that the graph representation carries much more
information than plain SMILES strings.

The problem then looks similar to a classical deep-learning
method, framing the families of the eigenvalue problems de-
scribed in equation 4 as a problem that can be tackled via deep
learning.

This work aims to close the gap by providing a robust method
that makes sure, that the representation, the neural-network, and
the training process obey quantum-physical principles.

2 Related Work
Predicting physical properties of chemical compounds with sta-
tistical methods is indeed a well-known topic in the literature.
Recent work comparing the representations of molecules for the
QM-9 prediction performance of a feed-forward neural network
(FNN) showed that the quality of predictions of physical proper-
ties depends strongly upon the molecular representation23.

The recent advances in natural language processing (NLP) in-
troduced by the self-attention mechanism in bidirectional auto
encoders24 showed that respective algorithms (BERT technology)
can learn semantic properties of the input25. In particular, the
BERT algorithm has abilities to organize and structure informa-
tion26.
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Fig. 2 Accuracy trajectories for both training and test sets for n = 5000
training steps on the ZINC dataset.

Molecular descriptors can be learned in a data-driven way27.
Therefore, the self-attention mechanism made room for innova-
tion around self-attention deep-neural networks in computational
chemistry using the SMILES or similar text representations of
molecules with good classification and regression results28.

Indeed, semi-empirical potentials are well-known to the com-
munity of computational chemists. Especially, the extended tight-
binding methods are fitted in a statistical manner from a large set
of molecules and have been celebrating a huge success29.

Thus, to the community, it does not seem to be relevant why
something works as long as it works. In contrast to most semi-
emprical potentials, deep-learning methods offer explainability
through dedicated algorithms such as LRP30 and others.

A fundamentally different, yet equally promising approach to
a text-based encoding is to use numerical representations such as
fingerprints, substructures, or graphs. Indeed, there is a recent
study investigating the potential of unified fingerprints for small
molecules as well as biomolecules31.

However, one-shot learning based on self-attention LSTM with
encoded molecular graphs as inputs showed more decent re-
sults32.

Many approaches for modelling the molecular structure with
graph neural networks (GNNs) have been applied. To increase
computational efficiency, a self-attention mechanism has been
rudimentarily applied to graph convolutional networks (GCNs)
as well28.

In 2017, the group around Schütt et al. proposed SchNet
and their benchmark dataset ISO17 33. The key improvement in
SchNet was to capture the molecular geometry as a graph while
using convolutions to craft weighted feature importance in the
molecule.

Another way to achieve better structure recognition is to apply
message-passing networks34. Furthermore, multi-headed self-
attention has been applied to GNN-encoded molecular structures
through a self attention mechanism35.

Chen et al. introduced the idea of bidirectional transform-
ers to chemistry on graphs. Yet they still work with SMILES
and also have not published their results on large benchmark

datasets9. The idea of obtaining a better representation through
graph-based deep-learning is becoming more and more popular;
however, many chemists are still working on SMILES representa-
tions20.

This work completes the series on the application of attention-
based algorithms to chemical problems. It investigates a
multi-headed graph self-attention model (GAT)22 with graph-
convolutions as an encoder for chemical classification and regres-
sion tasks, with significant results.

3 Theoretical Remarks
For quantum chemistry at any scale, we want to solve the time-
dependent Schrödinger equation when considered in the context
of the dynamic behaviour of the system.

HΨ(r, t) = EΨ(r, t) (1)

As elaborated above, one of the working hypotheses is that
the current machine-learning methods, including modern deep-
learning methods, in general only bypass the time-independent
Schrödinger equation by making predictions.

HΨ(r) = EΨ(r) (2)

But what does it mean to solve equation 2? We are generally
interested in finding eigenvalues and eigenfunctions of a system
for a particular operator (in this case, the Hamiltonian). Very
often, only the eigenvalues are of interest.

The solution to the time-dependent part of equation 1 is, how-
ever, rather simple. First one starts by separating the variables

Ψ(r, t) = Ξ(t)Ψ(r) (3)

We then solve for the positional part and the time-dependent
part separately. The time-dependent part has standard solutions
that have an analytical expression.

The time-independent part, however, has solutions that are
not solvable by analytical means for many-electron systems. The
only pathway to a solution for the time-independent part of the
Schrödinger equation is thus a numerical one.

The accuracy of each method for solving equation 2 is thus
theoretically bounded by the hardware limits of the machine per-
forming the calculations.

The more interesting problem is to solve the time-dependent
Schrödinger equation. Once the TISE is solved, the dynamics can
be computed efficiently.

Solving the TISE with deep learning is not a new idea and has
been prominent on tech blogs since 201736. The article by Steinke
provides a first hint that the problem is tractable with neural net-
works.

In the academic literature, the topic occurs in relatively fre-
quently just a little time later37–40. However, the methods pre-
sented by the authors differ from this paper fundamentally by ex-
plicitly incorporating the flaws and approximations that classical
quantum chemistry must make by design.

The key innovation in algorithms exploiting deep learning is
not backpropagation, but automatic differentiation (AD). It has
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been shown that AD can be exploited to tackle quantum chemical
calculations because with AD it is possible to optimize basis sets in
the Hartree-Fock scheme41. Moreover, the application of physical
regularizers has been shown to be beneficial in modelling wave-
functions via backpropagation42.

The approximations and flaws include the Born-Oppenheimer-
approximation (BOA), using Kohn-Scham density functionals in-
stead of wave functions, and the approximation of the wave func-
tion as an expansion of an infinite basis set.

The standard expansion of the wave function into atomistic ba-
sis functions needs numerous determinant calculations (known
as Slater determinants) and are thus lengthy to perform. The
self-critical comments on FermiNet conclude that the scalability of
FermiNet might not be useful for practical quantum chemistry37.

Moreover, many authors ignore the fact that most quantum
chemical methods, including the coupled-cluster methods, rely
on the Hartree-Fock optimized basis sets as their starting point.

In the end, all quantum chemical methods want to solve the
eigenvalue equation 2. It is thus mathematically always the same
problem, and just the direction from which it is tackled differs.

The creativity in problem-solving comes thus from solving the
general equation for arbitrary observables

λ =
⟨Ψ(r)|A|Ψ(r)⟩
⟨Ψ(r)|Ψ(r)⟩

(4)

In most cases, chemists are not interested in the wave function
nor how it has been constructed, and an explicit calculation might
not always be necessary.

Any explicit calculation focusing on explainability of the em-
ployed basis sets might even lead to misleading concepts that
chemists then apply in other disciplines without having any
means of thinking critically about the applied models.

For example, the orbital concept is a simplification that comes
from the aforementioned approximations made by theoretical
chemists and was made popular during the 20th century in the
western community, especially, by Linus Pauling.

Most ironically, Linus Pauling also introduced the construction
of arbitrary wave functions through combining atomistic wave
functions into hybrid orbitals (molecular orbitals) using group
theory in his valence bond theory.

Today, most (quantum) chemistry still builds on this idea. The
general quantum-chemical calculation is built up through calcu-
lating better wave functions obtained from simpler wave func-
tions. Equation 5 demonstrates the principle of building wave
functions of higher scale from wave functions of lower scales43.
The order of building the wave function starts from atomic or-
bitals (AO), and goes over molecular orbitals (MOs), Slater de-
terminants (SD) and finally many-electron wave functions (ME).

χ → φ → Φ → Ψ (5)

AO → MO → SD → ME43

Starting from the idea of constructing hybrid wave functions,
this approach is not far off taking other features and combining
them into even more sophisticated wave functions that are then

combined into a system-wide wave function.
The concept of constructing a holistic wave function directly

from diverse input features or smaller wave functions is inher-
ently explored in this work by applying the CARATE algorithm to
the datasets ALCHEMY and ZINC. Both of these datasets have a
diverse set of features.

Thus, this works aims to construct Ψ directly from the anno-
tated molecular graph, taking the annotated graph nodes and
edges as building blocks for the wave function Ψ.

Thereby, the new method CARATE shall skip at least two steps
in equation 5 and be independent of the BOA. Further, the new
CARATE method does not rely on Euclidean coordinates and thus
operates in a space other than the Euclidean space. The method
does not rely on Hartree-Fock calculations but uses the variational
principle by default.

4 Methods
The whole code was forged into a framework called CARATE and
moved later to a package called aiarc. Both packages are open
source and available on Codeberg, a German association for the
advancement of open-source software (https://codeberg.org/
sail.black/carate). The package can be obtained via PyPi and
pip, too (https://pypi.org/project/carate/).

The package contains a documentation hosted on readthe-
docs.io as well as notebooks providing the analysis of the training
trajectories and some tutorials on how to start a run from a note-
book.

The configuration files are provided as supporting information,
as well as extra plots, trajectories, log files, and trained models.
The reader is referred to the Codeberg of the package to obtain
the supporting information.

Moreover, the QM9 dataset was omitted because the proof of
concept which entailed solving the problem presented by QM9
was already tackled via the ALCHEMY dataset. The ALCHEMY
dataset even presents a more difficult task, as there are more
heavy atoms per molecule on average than in the QM9 dataset.

In general, the training on GPU is slightly faster, though the
CPU was chosen as the reference chip. The accuracy of the model
is sometimes slightly lower and less reproducible across different
CUDA versions and GPUs at different times.

For the presented work, an AMD Ryzen 9 7950X3D at 4.5 GHZ
32 Core, and AMD Ryzen 9 7950X processor 16Core at 4.5 GHz
and 64 MB L3 Cache alongside 64 GB of RAM were used on a
Debian 12 Bookworm system.

Different systems were tested during the development and all
produced the same results. Among the tested systems were
Ubuntu 20.04, 22.04, Debian 11, EndeavorOS, and Debian 12.
The algorithms were reproducible on all of them. Thus, both
the Arch Linux and common Debian distributions are suitable for
modelling tasks associated with the package.

Both methods, regression and classification, use the basic en-
coder structure and apply specific architectures on top of the en-
coder structure for each particular task. For classification, the
outputs of the encoder were transformed into logits using a sig-
moid function. For regression, a linear layer was stacked on top
of the encoder structure.

4 | 1–10Journal Name, [year], [vol.],
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Table 1 Results of the ablation study.

Method ZINC 500k (MAE) Alchemy 500k (MAE) Enzymes 1.2M (Accuracy) Proteins 1.2M (Accuracy)
GATv2 0.003±0.002 0.001±0.001 26±5 78±6
GCN 0.03±0.05 0.1±0.2 13±5 61±3
GCN + GAT 0.02±0.02 0.03±0.05 8 ·101 ±1 ·101 89±3
Linear + Pooling 0.1±0.2 0.06±0.1 16±4 44±3
CARATE one linear 0.003±0.002 0.001±0.002 9 ·101 ±1∗101 96±6

Fig. 3 Accuracy trajectories for both training and test sets for n = 5000
training steps on the ZINC dataset.

To test the classification abilities, the model was tested against
the drug discovery datasets for small molecules YEAST, MOLT-
4, and MCF-7 obtained from the TUDataset without any further
preparation (Table 4).

To test the performance on large protein graphs, the ENZYMES
as well as the PROTEINS datasets were chosen. The datasets
were obtained from the TUDataset using the PytorchGeometric
API without any further preparation.

For each example, five-fold stratified cross-validation for statis-
tical significance of the results was performed.

The datasets were obtained from TUDataset44, and Molecu-
leNet45 through the PyTorchGeometric API46. Each dataset was
used as is, to see how CARATE performs on raw data. Only the
regression datasets were normalized to compare them to the base-
line approaches. Thus, the only preprocessing applied was rescal-
ing to the target’s unit for regression tasks, as would be done
during a simulation.

If the data set were given in SMILES format, the SMILES for-
mat was then converted to a molecular graph representation im-
plemented in PyTorchGeometric46. All GAT and GNN implemen-
tations were applied from or achieved with the PyTorchGeomet-
ric46 library. Other deep-learning building blocks were imple-
mented using the PyTorch47 and Numpy48 libraries.

The CARATE network consists of an input layer consisting of a
GCN and GAT layer. To use the encoder in regression and classi-
fication tasks, another GCN layer followed by task-specific layers
are added to the stack (compare Figure 1)

To test the encoding to property prediction, the encoder-

predictor model was tested against physical regression tasks on
the ALCHEMY49 and ZINC datasets obtained from TUDatasets44.

The architecture for the regression tasks differs from the classi-
fication to obtain multitask regression results, instead of multitask
classification only by the output function applied to the network.

The results are compared to GIN-ε 44,50.The GINE-ε network
uses batch normalization as well as zero mean and unit variance
normalization.

Table 2 Regression performance compared to baseline GINE-ε 44.

Method ZINC 500k ALCHEMY 500k
CARATE 0.0016±0.0002 0.00050±0.00005
GINE-ε 44 0.084 0.103

Ablation studies
To examine the importance of each building block, an ablation
study was performed. As reference datasets, the ALCHEMY and
ZINC datasets for regression were used, as well as the PROTEINS
and ENZYMES dataset for classification.

The tested simplified algorithms included: just a GAT unit, just
a convolutional unit, the encoder GCN-GAT-GCN without the two
linear layer operators, and finally just the linear units used as the
operator to act on Ψ.

To enable fitting with just linear networks work, a pooling layer
was introduced to account for the mini batch. This is rationalized
as, in general, GNNs are a generalization of GCNs and adding a
pooling layer would be necessary for a classical GCN as well.

Proper convergence steps were selected on the previous exper-
iments for the CARATE algorithm. The regression runs were per-
formed five times and ran for ten training steps. The classification
tasks were performed five times, and ran for 2000 steps each.

5 Results

CARATE
The reader with historical interest can find the original notebooks

The convergence is for each task quite fast and well below 1000
iterations.

In fact, early stopping was beneficial in most cases, such that
longer training results may lead to less accurate results, especially
for the classification tasks. The described degradation of the con-
vergence behaviour indicates that the algorithm is prone to over-
fitting.
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For the small-molecule regression tasks consisting of the ZINC
and the ALCHEMY datasets, the training converged after less than
10 epochs (usually two epochs) up to numerical accuracies (Ta-
ble 2. There is a slight dependence on the train-test split (Figures
2,3). The protein classification tasks consisting of the ENZYMES
and PROTEINS datasets showed exceptional results that outper-
formed all reported benchmarks (Table 4).

On both protein classification tasks, ENZYMES and PROTEINS,
CARATE provides best-of-class fits, with accuracies up to 100% on
certain splits (compare Figures4, 5). The algorithm was prone to
slight overfitting on both datasets.

Ablation Study
The results of the ablation study are shown in Table 1. The ab-
lation study strongly suggests that neither part of the CARATE
algorithm can achieve full performance on its own. Yet, for the
CARATE algorithm, the second linear layer does not improve the
accuracy of the algorithm much, but only reduces variance.

6 Discussion
The aim of efficiently learning a decent molecular to property
representation from a dataset has been achieved. The proposed
architecture can be applied to small and large biomolecules alike
with satisfying results. The CARATE encoder enables multi-class
classification and regression tasks.

In Table 4, CARATE is compared to several other state-of-the-
art methods in the field. SchNet33 is based on the findings of
DTNN51. Thus, DTNN is one of the foundational works and has
hardly ever been matched by subsequent works in explicit wave
function modelling. With DTNN Schütt et al. investigated the use
of deep learning to solve the many-body Schrödinger equation.
Subsequent work such as PauliNet38 and SchNorb52 further build
upon the idea.

The Table 4 shows methods that aim to learn wave functions
explicitly, like PauliNet38, DeepErwin53, DTNN33, SchNorb52,
and FermiNet54 as well as methods that aim to learn wave func-
tions implicitly, like HiMol20, PDF55, and the algorithm used in
this work, CARATE.

Around half of the methods were in work or completed before
publishing the preprint of this present report. The other half was
developed after the publishing of the first preprint. Work that was
released after the first preprint of this work includes the explicit
method FermiNet, as well as the implicit methods HiMol and PDF.

The two implicit methods model different aspects of the en-
coder structure in different ways. To investigate whether CARATE
is a physically sound method, which can maintain state-of-the-art
performance even two years after its first release, CARATE was
also compared to the newer algorithms FermiNet, PDF, and Hi-
Mol.

HiMol is trying to mimic the concept of graph convolutions
through the distance-based clustering algorithm20. The PDF
method aims to facilitate a generalization over spectral graph
convolutions using a Fourier transform to tackle the problem of
wave-function learning. Yet the method applies the same foun-
dational mathematical concepts as the foundational GCN by just
parametrizing the singular value decomposition of the Lapla-

Fig. 4 Accuracy trajectories for both training and test sets for n = 5000
training steps on the ENZYMES dataset.

cian55.
Most methods except for DTNN and CARATE recommend using

GPUs, whereas HiMol can be trained in a reasonable amount of
time on a CPU as well. Most methods have no commercial inter-
ests behind their research. However, PauliNet, FermiNet and PDF
have ties to big tech companies either by being directly developed
at those companies or in receipt of funding from a tech company
at the time of writing the manuscript.

All explicit methods use the BOA as well. None of the implicit
methods rely on the BOA. The system size is very limited for ex-
plicit methods stopping at the small-molecule scale. All implicit
models can go up to supramolecular complexes.

All methods, except for CARATE, fail to achieve chemical accu-
racy across the datasets studied. Therefore, the conclusion is that
only CARATE offers an edge in terms of speed and accuracy to
classical quantum chemical methods.

Comparing CARATE to other state-of-the-art models in the
realm of representation learning in quantum chemistry reveals
that CARATE is the only algorithm that has an edge over quan-
tum chemical simulations.

Moreover, the multi-headed self-attention mechanism allows
efficient learning and prediction in low-data regimes. Besides,
the CARATE algorithm may detect flawed data in given datasets
or uncover statistically unrelated data, thus giving hints on where
to improve the quality of the data in a data lake.

In contrast, in the highly distorted data regime, the CARATE al-
gorithm may be inferior to classical methods based on supported-
vector machines or random-forest classifiers. The behaviour, how-
ever, is expected, as GAT units are inserted flexibly to detect chem-
ical patterns.

If the important pattern is not well represented in the dataset,
the attention mechanism may forget the pattern due to the
dropout probability of 0.6. To overcome this issue, highly dis-
torted datasets can be modelled by adjusting the learning or
dropout rate and training for more epochs to achieve similar to
or better than baseline results.

In fact, the performance of the algorithm might also be in-
creased by modifying the architecture in subsequent work via ad-
justing the network stack, using batch normalization or a slightly
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Table 3 Comparison of different algorithms and approaches to doing quantum chemistry with deep learning according to scientific principles. Abbrevi-
ations in the table head used: Ψ - how the wave function is evaluated, OA — open access, PB — published before preprint release of this work, BOA
— method needs the Born-Oppenheimer approximation, CA — method reaches chemical accuracy on most candidates, QC — method has edge over
quantum-chemical methods. Abbreviations in the system size column: atm — atoms, sm — small molecules, smc — supramolecular complexes.

Method Method Ψ Chip OA Code Commercial supp. PB BOA System Size CA QC
Pauli Net DNN expl. multi GPU no no (Microsoft AI4Science) yes yes atm, sm no no
DeepErwin DNN expl. GPU yes no no yes yes atm, sm no no
DTNN DNN expl. CPU yes yes no yes yes sm no no
SchNorb GNN expl. GPU yes yes no yes yes sm no no
FermiNet GNN expl. GPU yes yes Google DeepMind no yes atm, sm no no
HiMol GNN impl. GPU yes yes no no no sm, smc no no
PDF GNN impl. — yes no Huawei no no sm, smc no no
CARATE GNN impl. CPU yes yes no — no sm, smc yes yes

Table 4 Classification performance of CARATE as compared to other state of the art GNNs and kernel classifiers. Reference results were taken from
Morris et al.44

Method MCF-7 MOLT-4 YEAST Enzymes Proteins
CARATE 97±2 95.4±0.9 89.4±0.4 95±9 92±9
1-WL 94.5 94.6 89.2 50.8 72.6
WL-OA — — 88.2 56.4 73.4
GR 91.7 92.1 88.2 29.5 71.6
SP 91.7 92.1 88.3 39.3 75.6
GIN-e 92 92.4 88.3 38.7 72.2
GIN-e-JK 91.8 92.2 88.2 39.3 72.2

different dropout rate or dropout localization. However, the ab-
lation study strongly indicates that the current network structure
is crucial to the exceptional performance of the algorithm.

The ALCHEMY dataset poses a multitasking problem, and ZINC
only predicts a single-class problem. Thus, the method general-
izes to many operator problems from equation 7.

The MAE is used in the general Hartree-Fock scheme, making
it a physically sound metric. Yet convergence is also achieved
using the MSE error metric. Indeed, the convergence behaviour
appeared to be more stable during the experiments.

7 Conclusions
The accurate results on quantum chemical datasets indicate
that the algorithm is learning a wave function ψ to solve the
Schrödinger equation via the last regression layer, such that the
general Eigenvalue equation

ÂΨ = λΨ (6)

can be applied to understand the calculation. When considered
with multitask problems, the network solves

ÂiΨ = λiΨ (7)

The experiments indicate that Ai can be a non-linear operator,
as the activation function is the Leaky RELU function for the GAT
units22.

Thus, the network solves the generalized form of equation 2.
The high accuracy for most of the classification and regression
tasks suggests that the multi-head GAT units are decent encoders
for molecular structures.

When considering the initial motivation of solving the eigen-

value problem of an operator acting on a wave function, we must
conclude that the encoding of the molecule through the CARATE
unit indeed represents a wave function and the operator acting
on the wave function is represented by the final classification or
regression layer of the network.

The principle must by definition be self-replicating such that
one can add layer after layer and this would still satisfy the eigen-
value equations. Especially when presented with a descriptive
data regime, CARATE shows low training times while achieving
high accuracies for biomolecules and small molecules alike.

The idea of CARATE is similar to the one behind SchNet33 but
incorporating a self-interaction term and global attention such
that high accuracies can be achieved. By incorporating more
physical knowledge into the model, the encoding was framed as
a Markov graph in the wider sense.

Even though there is a high dropout probability and one
dropout layer is stacked as the last layer, accuracies are high.

On the other hand, it is known that large neural networks can
model implicit attention56, and thus the explicit attention mecha-
nism models the investigated problems sufficiently. By modelling
the multi-headed self-attention explicitly, the algorithm becomes
intentionally more accurate and efficient.

Simulations utilizing CARATE seem promising. However, to
verify the results, in later studies more experiments are necessary.
It would be interesting to see how CARATE performs classification
on larger datasets of biomolecules and small molecules because
the fitting abilities of the proposed algorithm appear to be very
high on large datasets such as ZINC and ALCHEMY.

In a recent master’s thesis, the construction of extremely de-
tailed wave functions via random forests to solve a multi-scale
problem of biodegradability was investigated successfully, leading Journal Name, [year], [vol.],1–10 | 7

Research & Reviews: Journal of Chemistry e-ISSN: 2319-9849  

JCHEM| Volume 13 | Issue 3|September, 2024 7

JCHEM,2024,13,1-10| 7 



Fig. 5 Accuracy trajectories for both training and test sets for n = 5000
training steps on the PROTEINS dataset.

to high calculation accuracies57. Thus, simulations or quantum-
chemical calculations on large macroscopic scales using the prin-
ciples discovered in this and subsequent works are feasible.

The GAT layer uses masked attention22 such that at least two
training epochs are needed for the numerical fit. The masked-
attention mechanism is actually similar to the convolutional
mechanism, such that only the direct neighbors are relevant for
the attention mechanism.

The attention mechanism is a message-passing mechanism and
the message needs to propagate at least once. On small molecules
the fit is thus fast and fitted after mostly two epochs.

For larger graphs such as the ENZYMES and PROTEINS dataset,
the message needs to travel for longer distance and thus the train-
ing takes more iterations.

This interesting fitting behaviour gives a first intuition into
the similarity of dynamic simulations and the training of deep-
learning algorithms on molecular graphs.

The fitting behaviour also suggests that the algorithm is coarse-
graining by default and coarse graining dynamically, as CARATE
can fit data sets of both large graphs and small molecular graphs
with high accuracies.

Thus, CARATE is behaving in a scale-invariant way and shows
fractal behavior, as the algorithm can act on any graph across
multiple scales simultaneously, incorporating self-similarity by de-
fault. The algorithm may thus have mathematical connections to
Rado graphs or fractal graphs in general.

The CARATE graph-based algorithm does not rely on the BOA
or other approximations and can fit experimental data to high
accuracies, too. Thus, the method of using wave functions that
are neural-network encodings of molecular graphs are superior
to classical ab initio methods, as the BOA reaches its explanatory
limit already at diatomic transition-metal fluorides58.

The wave function is not encoded in Euclidean space and does
not rely on atomic coordinates. This is an interesting approach,
but it gets rid of the BOA by design.

It remains an open question whether the experimental data
from the small compound datasets (MCF-7, YEAST, MOLT-4) are
noisy and therefore whether CARATE correctly misclassifies some
of the samples it is given. However, experiments with wave func-

tions obtained from random forests suggest that it is possible to
identify mislabelled data points in experimental datasets57.

In the end, models should be derived from experimental values
rather than theoretical considerations, such that new theories and
models derived from CARATE or similar algorithms trained on
experimental data of high quality may give new insights into the
theoretical foundations of chemistry.

To summarize, the key qualities of the developed software and
algorithms are:

• The algorithm fits up to numerical accuracy on the ZINC and
ALCHEMY tasks.

• The algorithm shows best-of-class fits even after two years
for classification problems PROTEINS and ENZYMES up to
100% accuracy on certain splits.

• The software can run on edge devices.

• The algorithm has low training times.

• The algorithm is explainable on the basic theoretical level.
Further, in terms of diving deeper into the theoretical foun-
dations, there may be a risk that too much explainability can
hamper the creativity of a chemist.

• The software does not require expert knowledge.

• The software produces reproducible algorithms.

8 Outlook
Based on the accurate regression results, the GNC-GAT encoding
enables the subsequently stacked layers to model a given, well-
described problem accurately.

Considering the success of the general theoretical mindset pre-
sented in this work, a more in-depth study of the theoretical impli-
cations of the mathematical relations described here is mandatory
for deriving a more solid theoretical framework.

The study is being prepared under the working title Under-
standing chemistry through explaining quantum-chemical calcula-
tions from graph neural-networks.

This upcoming work aims to use methods from the community
of explainable AI, to understand the theoretical foundations of
the underpinning fitting behavior of CARATE.

Future work will also focus on applying CARATE to multi-
scale simulation problems, many-class multitask learning, trans-
fer learning22, and flawed or fraudulent data detection in chemi-
cal datasets.

It is also a promising venue to investigate how CARATE and de-
rived algorithms perform on excited-state dynamics, as this paper
shows that CARATE does not rely on the BOA as a mandatory ap-
proximation. Therefore, CARATE could bypass the current limita-
tions of excited-state dynamics introduced by methods of state-of-
the-art quantum-chemical methods. It would also be interesting
how CARATE performs compared to multi-reference methods.
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Fig. 6 Trajectory of the training accuracy using the datasets MCF-7,
MOLT-4, and YEAST
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