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ABSERACT

layered oxides, which are commonly
bemical formula xLiMnOz- (1-x) LiMO2 (M=Co, Ni, Mn, etc.),
cathode materials for rechargeable lithium
anism involving simultaneous Li and O removal is often
gen loss and MnOz formation appear when first charging
e plateau at 4.5 V vs Li/Li*, which is bottleneck of
dustrializalion for the resulting security problems. In our recent findings,
avered/spinel hetero structured Li-rich material Li1.2Nio.2Mno.sO2 consist of
03, LiNiMnO2 and LiNio.sMn1.504 without oxygen loss was desired. After
assembling it into lithium-ion battery, CV curves have no oxygen evolution
peak and no oxygen appears in situ Differential Electrochemical Mass
Spectrometry (DEMS). According to the first principle, Li* ions in Li2MnOs de-
intercalate then Ni2* ions of LiNio.sMn1.504 migrate into the sites when first
charging, which avoids the oxygen loss from the collapse of Li2MnOs. The
exist of spinel phase make the phase transition process of circulation stable,
which contributed to the high cycling performance for lithium-ion battery
(300 and 220 mAh g1 after 200t cycles at 0.1 and 0.5C-rate (1C=250 mA
gh).

Keywords: Li-rich; Cathode materials; Oxygen loss high capacity; Lithium-ion

batteries.
INTRODUCTION

As the new energy industry booms, Lithium-lon Batteries (LIBs) with higher
energy and power densities as the leading role of battery industry is applied
to 3C, energy storage and many other fields such as Hybrid Electric Vehicles
(HEVs) and Electric Vehicles (EVs).

RRJOMS| Volume 12 | Issue 2 |June, 2024 1


mailto:1026882147@qq.com

Research & Reviews: Journal of Material Sciences e-ISSN: 2321-6212

Layered structure Li-rich materials xLioMnOs (1-x) LiMO2 (M = Mn, Ni, and Co) (LMR) are more and more attractive to
researchers because of its high theoretical specific capacity (350 mAh g1) and high discharge voltage (4.5 V).

However, the materials also suffer from some disadvantages with initially large capacity loss and poor rate cycling

performance 171, As reporters’ views, oxygen loss is the main reason for its poor stability [& 9. It is ge

transition stable. Spinel coating is preferred by researchers
So far, the coating methods include from simple sol-gel, co- licated as Atomic Layer Deposition

(ALD), Thermal Evaporation (TE) Pulsed Laser Deposition (PL etron sputtering (RMS) [37-49], These

Coo.602 was obtained after annealing at 450°C for 5 hrs. Li2COs and Nio.2C00.602 were mixed and ground at a ratio
Li1.2Nio.2C00.602 was obtained after annealing at 850°C for 12 hrs.

The structure and crystallinity of the samples were characterized using an X-ray diffractometer (XRD; Rigaku X-ray
diffractometer) with Cu Ka radiation source (A=0.1506 nm) under a voltage of 40 kV and a current of 30 mA. The
morphology and elementary composition of the samples were observed by scanning electron microscopy (SEM; JEOL
JSM, 65 10 V), transmission electron microscopy (TEM; JEM-2100, 200kV) and Energy-Dispersive Spectrometer
(EDS). The chemical states of LNMO during the circulation were analyzed by X-ray photoelectron spectroscopy (XPS;
Thermofisher ESCALAB 250Xi, 15kV, 10.8mA). Here, we demonstrate directly that there is no oxygen produced during
charging to 4.8 V, by in situ differential electrochemical mass spectrometry (DEMS; HIDEN HPR20, 70 eV, 900 V).
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A mixture of 80% wt Li1.2Nio.2Mno.s02, 10% wt. super p, and 10% wt. Polyvinylidene Fluoride (PVDF) dissolyed in 1-

foil as the counter electrode.

The Cyclic Voltammetry (CV) was measured by an electrochemical workstation (CH

The synthesis of LNMO was achieved by a two-step procedur: i i drothermal and annealing methods
shown in Scheme 1. Figure 2 (a, b) are the X-ra e precursor Nio.2Mno.eCOs, Nio.2Mno.602 and
product Li1.2Nio.2Mno.602. The precursor before a hoo :CO3, whose diffraction peaks is consisting with

MnCOs (a=b=4.790 A, c=15.694 A, sp . ), JCPDS NO.14-1472). The precursor after annealing is

atic illustration on the formation process of rich-LI LNMO
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Figure 2. (a, b) XRD of precursor Nio.2Mno.sCOz, Nio.2Mno.sO2 and product Li1.2Nio.2Mno.602; (¢) SEM imag

materials. Note: (a)» R-3 NiMnOs; ® Pcab Mn20s,(b) (*) R-3m, (¢)C2/C.
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The phase transition in the circulation
The most important result of this work shows in Figure 3a. LNMO was as; | as the cathode material

and tested in-situ DEMS. From the open circuit voltage 3.1 V tg,

charging voltage 4
LMR 111, Furt

, there is no oxygen
produced at all, which is an essential difference from the traditi more, the oxygen precipitation
onal LMR. This means that the
traditional phase transition mechanism has changed in this ma structure of the material has
changed dramatically too in Figure 3b. As the circul4 i een that the Li2MnOs phase with the

ing and the spinel phase LiMn20s4 appears
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The above conclusions are further confirmed in Figure 3, which shows the HRTEM, SAED and EDS analysis of LNMO
before and after 5 cycles. In the initial state, the material consists of three phases shown in SAED, lattice plane for
LiMOz, lattice plane for Li2MnQOs and lattice plane for LiNio.sMn1.504. EDS analysis corresponding to LiNio.sMn1.504
shows the auto ratio O: Mn: Ni is 12.85: 3.12: 0.9, which is similar to the theoretical ratio 4:1.5:0.5. While after 5
cycles, LiNio.sMn1.504 and LiMO2 still exist except for Li2MnOs. And in contrast to the XRD result, LiMn204 also appears.

There is a layer of amorphous phase on the edge of the crystalline phase, which is considered as the SEI film.
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Figure 4. The HRTEM, SAED and EDS analysis of LNMO before and after 5 cycles.
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on. In ine i cy range is considered as the Warburg impedance, corresponding to the Li*

material 321, The numerical value of the Li* diffusion coefficient in the electrode can be

Vm
FSA,

ure 5d shows the trend that the slope represents Warburg coefficients (Aw) increases with circulation, which is

D, =08 (- )F

to the change of crystal structure. The Warburg coefficients (Aw) of the cells with circulation and after 5,20
cycleS are 1454.9, 2040.3, 2375.9 Q/w/2, respectively. These results are consistent with the above electrochemical

properties of LNMO.
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Figure5. (a) The cycle performance of LNMO at the rate of 0.1C and 0.5C (b) The rate performance of LNMO (c)
Electrochemical impedance spectra (EIS) of LNMO. (d) Linear fitting of Warburg impedance of LNMO. Note:
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