
ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3024

Implementation of 2-D Discrete Cosine

Transform Algorithm on GPU
Shivang Ghetia

1
, Nagendra Gajjar

2
, Ruchi Gajjar

3

Student, Electronics and Communication Engineering Branch, Department of Electrical Engineering, Nirma

University, Gujarat, India
1

Sr. Associate Professor, Electronics and Communication Engineering Branch, Department of Electrical Engineering,

Nirma University, Gujarat, India
2

Assistant Professor, Electronics and Communication Engineering Branch, Department of Electrical Engineering, Nirma

University, Gujarat, India
3

ABSTRACT: Discrete Cosine Transform (DCT) is a technique to get frequency separation. When DCT is applied on

an image, it will give frequency segregation of an image since it is composed of DC value and range of low frequency

values to high frequency values. DCT is very useful in image compression. When high frequency values are eliminated

from image, it will give efficient compression at the cost of little degradation of image quality. But, the bottleneck is

that when 2-Dimentional DCT is carried out on CPU, it takes much time since there is very high order of computation.

To overcome this problem, Graphics Processing Unit (GPU) has opened the door for parallel processing. In this paper,

we have implemented 2-D DCT with parallel approach on NVIDIA GPU using CUDA (Compute Unified Device

Architecture). By applying here presented 2-D DCT algorithm for image processing has narrowed down the time

requirement and has achieved speed up by factor 97x including data transfer timing from CPU to GPU and again back

to CPU. So, parallel processing of 2-D DCT algorithm on GPU has fulfilled the purpose of fast and efficient processing

of an image.

Keywords: DCT, GPU, compression, CUDA

I. INTRODUCTION

The necessity for powerful computation is increasing rapidly. When it comes to advancement in the processing power of

a computer, the first thing to be taken into account is the processor‟s operational frequency. But it cannot be expected to

keep on increasing with time. The fact is that the clock frequency cannot be increased beyond some limit because of

various factors such as overheating, etc, leaving the parallel computing as the only option for performance enhancement.

Due to the hike in architectural and compiler complexity, multicore processors have always challenged engineers. But

companies in the field of visual computing and graphic processing like NVIDIA, AMD has welcomed those challenges

and opened new doors in the field of parallel and high performance computing [9].

The CUDA, empowered by NVIDIA, integrated with high end C language which consists of additional functions,

provides an interface between the developer and the device for the transferring of data and distribution of work between

GPU and CPU [8]. It has the capability of identifying, programming, tracing a single core computation and performing

multiple tasks in parallel as per the user requirement.

This flexible nature for parallel processing has attracted the researchers of image processing field. In image processing

techniques, processing of images takes too much time which makes the system non real time. Researchers always try to

narrow down this problem. GPU has launched new wings to solve this. Companies like NVIDIA have developed highly

competent hardware and software to provide efficacious speed up for parallel processing. This invention has made

revolution in field of parallel processing. Using its powerful techniques, optimized image processing algorithms can be

implemented [10]. Along with image processing, image compression is also very crucial nowadays. Different

compression algorithms are available which can be implemented on GPU for fast processing of compression. One of the

most effective algorithms for image compression is Discrete Cosine Transform (DCT). When DCT is applied on an

image, it will segregate its frequency components. As image is in 2-dimentional format, to get complete segregation of

an image 2-D DCT must be applied. This paper shows the method for applying 2-D DCT on an image on a GPU. This

will reduce the processing time and will give much accurate results.

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3025

II. PARALLEL APPROACH TO IMAGE PROCESSING AND COMPRESSION

With the advancement of technology, world is now referring image processing as one of the most powerful field for
automation and surveillance. Before using image processing, one must be sure that image should be processed within
available time span. This only can make system near real time. Essentiality for expeditious processing of images is very
pivotal in these days. Another bottleneck is, that in most the case, the size of an image is exorbitant and it has
redundant data. So, it is essential that compression algorithm should be implied to zero down such redundant data but
processing and implementing DCT compression algorithm on CPU takes too much time and makes the system non real
time. In this scenario, GPU has provided solution for satisfying such fast computation. NVIDIA has developed CUDA
to overcome the need for parallel processing [1].

Let an image of size m x n be processed and compressed according to 2-D DCT algorithm on GPU. Before
implementing parallel processing approach, one must have knowledge of organizing block size and number of threads
per blocks on the GPU. The presented algorithm for image compression takes number of rows (m) as number of block
and number of columns (n) as the total number of thread within single block [3]. For example, consider image of size 4
x 6, as shown in figure 1. BlockIdx (block index) will vary from 0 to 5 and threadIdx (thread indexing) will vary from 0
to 3.

Fig. 1. Thread and Block dimensions for image

Once the size of block is decided, raw image data needs to be converted into 1-D format for processing purpose. Raw
data (image data) is converted into 1-D data using row major format. Once 1-D data is on hand, the proposed 2-D DCT
algorithm can be applied. Different parts for implementation of 2-D DCT and compression algorithms are as below:

A. Convert N point data into 2N point data

As data is now available in 1-D format, it is required to convert that N point data into 2N point data, where N point data
is data of each block. The N point data is converted into 2N point data by mirror reflection of N point data. This mirror
imaged data of each block should be appended to corresponding block. This process is illustrated in the figure 2. In this
figure, first part is the original data and later part is the mirror imaged data appended to its corresponding N point data.

Fig. 2. Effect of Covert N point to 2N point kernel on data

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3026

B. Apply 2N point CUFFT on 2N point data

Once 2N point data is on hand, Fast Fourier Transform (FFT) is applied. In CUDA, FFT is directly available. NVIDIA
has developed „cufft.h‟ header file for optimized FFT on data. This CUFFT library is so rich that it provides an option
for forward FFT and reverses FFT [12]. Data used here is in form of 1-D. So, for 1-D data, CUFFT library provides
CUFFTPLAN1D. It also provides CUFFTPLAN2D and CUFFTPLAN3D for 2-D and 3-D data respectively [12].
Another feature of CUFFT library is that it provides different types of casting options like C2R (Complex data to Real
data), R2C (Real data to Complex data) and C2C (Complex data to Complex data) [12]. For applying CUFFT (CUDA
FFT), some parameters should be passed. These parameters are:

1) Number of points in FFT, i.e. 2N

2) Batch size, that will be same as number of columns of an image

3) Type of FFT, that will be CUFFT_FORWARD as forward transformation is required [6].

C. Converting 2N point data into N point data

After CUFFT data is available, 2N point data should be converted back into N point data. CUFFT applied data is of 2N
point. In each 2N point data, first N point data is significant and the other N point data is a negative mirror image of the
first N point data. So, from each 2N point data, the first N point data is conserved and remaining N point data is
neglected. Raw data is now formed by collecting first N point of each 2N point data. This is shown in figure 3.

Fig. 3. Effect of converting 2N point data into N point data

D. Transform of N point data for converting row major format to column major format

Above mentioned N point data is now required to get transformed. Initially, data of an image is in 2-D form and this 2-
D data is converted into 1-D using row major format. On this row major formatted data CUFFT and above mentioned
steps are applied. Next step is to convert this processed 1-D N-point data into column major format for further
processing. For converting this N point data into transposed N point data, kernel must be written with great calculation
of launching threads and indexing these threads [11]. Here, thread indexing will vary from 0 to total number of rows.
For each thread, there will be number of columns time iterations. For every iteration, thread index is offset added to
multiplication of iteration index and number of rows.

E. Convert Transposed N point data into 2N point data and apply CUFFT

Transposed N point column major formatted data is now converted into 2N point data. Here, procedure of converting N
point data into 2N point data is same as the previous one. But the only difference will be that now number of thread in
each block is equal to number of rows and total number of batch is equal to number of columns. This interchange
between block size and total number of blocks is due to column major format data. Once 2N point data is ready to use,
this data is used for applying CUFFT [6]. Here also it is essential to be attentive for passing argument to
CUFFTPLAN1D [12]. As data is now on column major format, batch size will be equal to pervious block size [6].
Number of point for applying FFT is also 2N point. Once CUFFT_FORWARD is applied on this 2N point column
major formatted data, data is multiplied with twiddle factor. In twiddle factor multiplication, the total number of point
will be 2N. For each 2N point data, first N point data is multiplied with its corresponding twiddle factor of 2N point.

Once each first N point data of each 2N point data is multiplied with twiddle factor, this 2N point data is required to
convert back to N point with the purpose of making data quantized and compressed. To convert into N point data from
each 2N point data, first N points are gathered and are put together. Now this gathered data is ready to get quantized
and compressed. If we convert this N point 1-D data into 2-D data and again generate an image from it, it will result in
frequency separation of the image, similar to DCT of an image. Up-Left corner contains the DC value of an image and

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3027

as going from up to down or left to right, frequency get increased [13]. Sample image that shows the frequency
separation is shown in figure 4.

Fig. 4. Frequency distribution in 2-D DCT applied image

F. Quantization of N point data

N point data is required to get scanned in particular fashion. Zig-zag scanning is used to make data in such a form
that will give gradual rise in frequency from left to right [15]. Pattern for zig-zag scanning (starting with 0 and ending
with 63) is shown in figure 5.

Fig. 5. Process of zig-zag scanning

For this purpose, kernel must be written prudently. The total number of thread that should be launched depends on two
conditions. These conditions differ in terms of part for which loop indexing is less than width of an image and part for
which loop indexing is greater than width of an image. Loop indexing will be the total number of diagonal scanning
lines in zig-zag scanning. In figure 5, loop indexing will vary from 0 to 12 as there are 13 diagonal scanning lines. Flag
has been used for getting the idea about current status of scanning line. For loop indexing less than width of an image,

flag= loop_index+1;

But for loop indexing greater then width of image thread indexing will be somewhat different. It will be as below:

flag=width – (loop_index+1)%(width);

Now it is required to check whether data is either on upper or in lower half triangle on an image. Once this is decided, it
is also required to check whether the loop indexing is odd or even. So, there will be total four conditions to check,
depending on upper part or lower part and even or odd indexing.

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3028

Let, width = width of an image

 Hight = hight of an image

 id= thread indexing

 loop-indexing=i=width+hight-1

 reminder+=flag

for upper odd part:

scanned_data[id + reminder] = data[id*(width-1) + (i-1)]

for upper even part:

scanned_data [id + reminder] = data[id*(width-1) +(width+height-2)*((i-width-1)/2 +1) + (i-1)]

for lower odd part:

scanned_data [id + reminder] = data[((i-1)*(width+1)) - (id*(width-1) + (i-1))]

for lower even part:

scanned_data [id + reminder] = data[((i-1)*(width+1)) - (id*(width-1) +(width+height-2)*((i-width-1)/2 +1) + (i-1))]

Once this scanning is over, we have frequency separated data in 1-D format. Now this data can be used for
implementing quantization algorithm. For compression purpose, lower part of this scanned 1-D data is neglected and
former data is quantized using standard quantization table. This will eliminate high frequency components and will
zero down the redundancy. Run length coding can be used for compression of such redundant data [16]. Other
compression techniques can also be applied.

G. Regeneration of Image

Compressed data is now required to generate original data back. For that, inverse quantization is applied [16]. Once
inverse quantization is applied, all the previous kernels are implemented in reverse order. It will follow the following
steps:

- Convert N point data into 2N point

- Apply 2N point CUFFT_INVERSE

- Apply Transpose after converting into N point data

-Apply 2N point conversion and again CUFFT_INVERSE

- Apply twiddle factor multiplication

Implementation of all above kernel will generate the original raw data of image but it is somewhat distorted due to
quantization. But PSNR (Peak Signal to Noise Ratio) is still in acceptable range. PSNR is mostly defined via Mean
Square Error (MSE) [17]. MSE can be calculated as,

MSE =
1

mXn
 [I i, j − K i, j]2n−1

j=0
m−1
i=0

Here I(i, j) represents the original image and K(i, j) represents the regenerated little distorted image.

 PSNR = 10log10(
MAX 2

MSE
)

Where MAX= maximum value in distorted regenerated image

 If the PSNR value of regenerated image is higher than 30dB then, it is in acceptable range

III. OUTPUT RESULTS AND SPEED UP OF ALGORITHM

Algorithm for image compression can be implemented of NVIDIA GPU which is CUDA enabled. For processing of
image, binary file of image is required. We have used Matlab to convert required image intro binary file. Once binary

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3029

file is generated, this binary is imported in Visual Studio because Visual Studio can make use of CUDA Runtime
Toolkit [9].

This binary data is processed on GPU and after all computations, this data is written back into a binary file, and using
this resulting binary file, final image can be generated [7]. Different sizes of images are tested and their resulting
images are also presented here. While comparing this algorithm with another algorithm for processing, one should keep
processing time and PSNR of resulting image on eyes. Quantization is also a functional part. Depending on
compression requirements, different compression algorithms can be implementation after zig-zag scanning. Results
depicted here are without any quantization so to get idea about how much exact image can be generated. Processing
time is measured in milli-seconds (ms) here.

Table I Processing Time of GPU and CPU and PSNR of GPU generated images

 Lena
128 x 128

Lena
176 x
144

Peppers
256 x 256

Barbara
512 x 512

House
800 x
600

Processing
time on
GPU (ms)

Less than
1

Less than
1

Less than
1

3 15

Processing
time on
CPU (ms)

680 1451 5394 43118 112541

PSNR(dB) 34.5625 35.6318 32.4320 36.4364 33.9826

When we plot these data on graph, figure 6, it will illustrate how efficient the use of GPU for high computation rather
than CPU. Graph shows that as size of image goes on increasing, it takes much higher time on CPU but processing of
same image on GPU will take few milli-seconds only.

Fig. 6. Graph between CPU and GPU computation time for different images

IV. CONCLUSION

After the successful implementation of image processing and compression DCT algorithm on GPU, processing of
highly large images such as images from satellite can also be implemented. In this case, it is crucial that images taken
by the satellite is processed there on the satellite and is transmitted on the Earth. To make processing of such massive
image faster, GPU will help for parallel processing. Implementation of compression algorithm will help in reducing
bandwidth requirement for transmission of processed data. Here results directly depict the faster processing compared
to CPU, but the only threat is for transfer of data from CPU to GPU or vice-versa. Research is going on for direct
feeding of data into GPU.

 As FFT and transformation is used here for processing of an image, wavelet transform can also be implemented on GPU
for processing and compression of image. Other aspects for processing images on GPU are the accuracy of processed
data as it has Special Function Units. When data is to be handled with much accuracy and numbers after decimal point
are also important, GPU will serve best purpose in that computation. As current technology uses image processing as one
of its hand, processing and compression of such images can be deployed in GPU with alluring results.

REFERENCES

[1] Jason Sanders and Edward Kandrot ,“Cuda by Example” , ISBN 0131387685

[2] Nvidia Tesla C2075 Whitepaper.

[3] David Kirk, Wen-mei Hwu ,“Programming Massively parallel processors” , ISBN: 978-0-12-381472-2

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3030

[4] John D. Owens et aI., A Survey of General Purpose Computation on Graphics Hardware, Computer Graphics Forum, 2007

[5] John Nickolls et aI., Scalable parallel programming with CUDA, International Conference on Computer Graphics and Interactive Techniques,

Article No. 16, 2008
[6] Vasily Volkov and Brian Kazian, “Fitting FFT onto the G80 Architecture”, 2008.

[7] NVIDIA CUDA: Compute Unified Device Architecture programming guide, version 2.0, 6th july 2008
[8] Whitepaper on “NVIDA’s Next Generation CUDA Compute Architecture: Fermi”, version 1.1

[9] A whitepaper by Peter N. Glaskowsky , “NVIDIA’s Fermi: First Complete GPU Computing Architecture”, September 2009

[10] NVIDIA TESLA GPU Computing: Revolutionizing Performance Computing, October 2010
[11] CUDA CUBLAS Library,PG-05326-032_V02, August-2010

[12] NVIDA CUFFT Library,Version 5.0, October 2012

[13] Andrew B. Watson ,“Image Compression using the Discrete Cosine Transform”, Mathematica Journal, 4(1), 1994, page 81-88
[14] Syed Ali khayam, “Discrete Cosine Transform: Theory and Applications”, Department of Electrical and Computer Engineering, Michigan

State Univesity, March 10th 2003.

[15] khalid Sayood , “Introduction to Data Compression”, 2012,ISBN- 0124157963
[16] Yilliray YLAMAN and Ismail Erturk , “A new color image quality measure based on YUV transformation and PSNR for human vision

system”, Turkish Journal of Electrical Engineering and Computer Science, Vol 21, issue 2,2013.

BIOGRAPHY

Shivang Ghetia received his B.Tech degree in Electronics and Communication Engineering from Nirma University,

Gujarat, India in 2013. Currently, he is working on GPU technologies for fast computation and speed up of different

algorithms. His research interests are embedded platform researches and exploring potential of GPU computation.

Nagendra Gajjar received his B.E. degree in Electronics Engineering from S. P. University, Gujarat, India in 1990

and his M.Tech degree in Computer Application from IIT, Delhi, India in 2003. He received his Ph.D from Nirma

University, Gujarat, India in 2013. He is currently working as Sr. Associate Professor in Nirma University, Gujarat,

India. He has received Best Engineering College Teacher Award from ISTE, New Delhi, India in 2005. His research

interests include reconfigurable computing and processor architecture and Digital Signal Processing.

Ruchi Gajjar received her B.E. in Electronics and Communication Engineering and M.E. in Communication Systems

Engineering from Gujarat University in 2008 and 2010 respectively. She is currently pursuing her Ph.D in the field of

image processing from remote sensing applications from Nirma University, Gujarat, India. She is presently working as

an Assistant Professor in Nirma University, Gujarat, India and her research interests include image restoration and

super resolution techniques.

http://www.ijareeie.com/

