ISSN:2321-6212

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Review Article Open Access

Deep-UV Ablative Laser Technology: A Technical Review

Abstract

Ablative laser technology has been used successfully as a tool in scientific applications particularly to evaluate the homogeneity of materials and to depth-profile samples with the object of attaining elemental distribution at subsurface levels. Pulsed micro-beams strike a target with pinpoint accuracy and produce trace elemental information both spatially and in the substrate. Exploring different strata of a sample can produce data on impurities buried deep within the sample matrix. This is particularly important in cases where hidden impurities can make a difference to the performance of certain samples, such as semi-conductors or biomedical specimens. Stochastic effects such as imperfect crater formation, erratic energy pulses and unpredictable drift in beam energy could significantly affect the results of research applications. These technical features are controlled by sophisticated software, which plays a salient role in stabilizing the instrument. Samples are usually heterogeneous in nature, such as rocks, reservoir cores and concrete structures, and sample heterogeneity, therefore, is a factor that precludes adoption of conventional protocol for standardization of the technique. Soft samples such as gels and waxes could undergo standardization under special conditions. However, the technique is largely semi-quantitative for solids and is particularly attractive for exploring the homogeneity of solid targets, which reflects the level of elemental distribution within the sample matrix. The laser unit is coupled to a Perkin Elmer ICP-MS instrument and maintenance of consistent operation parameters is crucial for accurate and reproducible results. The laser beam wavelength is in the deep UV region and the system is operated with a beam of 213 nm of variable diameter between 5-100 μm, gas flow of 0.8 L/min, energy pulse rate of 60 MHz, and beam energy between 30-60%. Compared to other current instrumental techniques, ablative laser technology is superior for depth-profiling and surface analysis.

Pillay AE, Stephen S, Elkadi M and Vukusic S

To read the full article Download Full Article | Visit Full Article