ISSN: 2319-9873

Reach Us +44 7456 035580
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article Open Access

Friend Recommendation on Social Network Site Based on their Life Style

Abstract

Social network sites attracted millions of users. In the social network sites, a user can register other users as friends and enjoy communication. Existing social networking sites recommend friends to users based on their social graphs, which may not be appropriate. In proposed system friends recommends to users based on their life styles instead of social graphs. It done by means of sensor rich smart- phone serve as the ideal platform for sensing daily routines from which people’s life styles could be discovered. Unsupervised learning method is used. Achieve an efficient activity Recognition and reduce the false positive of Friend Recommendation. Friendbook integrates a feedback mechanism. Finally the results show that the recommendations accurately reflect the preferences of users in choosing friends.

Ramya R, Bonshia Binu

To read the full article Download Full Article | Visit Full Article