ISSN:2321-6212
Hierarchical Ni-Mn Double Layered/Graphene Oxide with Excellent Energy Density for Highly Capacitive Supercapacitors
In this article, a highly capacitive composite electrode material consisting of nickel manganese double layered/graphene oxide (NiMn-LDHs/GO) has been synthesized for supercapacitor energy storage. Various analytical techniques, including X-Ray Diffraction (XRD), Raman spectroscopy, High-Resolution Transmission Electron Microscopy (HRTEM), and Scanning Electron Microscopy (SEM), have been employed to characterize the as-synthesized NiMn-LDHs/GO. The microscopic images obtained using HRTEM analysis clearly reveal the formation of a lattice fringe pattern (lattice spacing of ~0.22 nm) for GO, while SEM images show a highly porous nature.
The super-capacitive performance of the as-synthesized electrode material has been evaluated using an electrochemical workstation comprising of a 3-electrode system. The working electrode, made up of NiMn-LDHs/GO (active material) on Ni foil (working electrode) with the help of PVDF (binder), has shown a specific capacitance of 1964 Fg-1 at a current density of 1 Ag-1 with the Galvanostatic Charging/Discharging (GCD) technique. It has also shown remarkable cyclic stability with a capacitance retention of 96% after 5000-cycles. The high-power density (401 Wkg-1) and energy density (17.78 Whkg-1) signify the excellent electrochemical supercapacitor behaviour in charge storage applications.
Gopal Krishna Gupta1, Kaushik K. Shandilya2*
To read the full article Download Full Article | Visit Full Article