ISSN:2321-6212

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article Open Access

Hierarchical Ni-Mn Double Layered/Graphene Oxide with Excellent Energy Density for Highly Capacitive Supercapacitors

Abstract

In this article, a highly capacitive composite electrode material consisting of nickel manganese double layered/graphene oxide (NiMn-LDHs/GO) has been synthesized for supercapacitor energy storage. Various analytical techniques, including X-Ray Diffraction (XRD), Raman spectroscopy, High-Resolution Transmission Electron Microscopy (HRTEM), and Scanning Electron Microscopy (SEM), have been employed to characterize the as-synthesized NiMn-LDHs/GO. The microscopic images obtained using HRTEM analysis clearly reveal the formation of a lattice fringe pattern (lattice spacing of ~0.22 nm) for GO, while SEM images show a highly porous nature.

The super-capacitive performance of the as-synthesized electrode material has been evaluated using an electrochemical workstation comprising of a 3-electrode system. The working electrode, made up of NiMn-LDHs/GO (active material) on Ni foil (working electrode) with the help of PVDF (binder), has shown a specific capacitance of 1964 Fg-1 at a current density of 1 Ag-1 with the Galvanostatic Charging/Discharging (GCD) technique. It has also shown remarkable cyclic stability with a capacitance retention of 96% after 5000-cycles. The high-power density (401 Wkg-1) and energy density (17.78 Whkg-1) signify the excellent electrochemical supercapacitor behaviour in charge storage applications.

Gopal Krishna Gupta1, Kaushik K. Shandilya2*

To read the full article Download Full Article | Visit Full Article