ISSN: 2320-0189
Promotion of Plant Growth Promoting Rhizobacteria (PGPR) for Increases Production of Biomass
Rhizobacteria that promote plant growth (PGPR) are naturally occurring soil bacteria that irritate plant roots while also assisting in the development of plant growth. The early introduction of plant extracts containing specific kinds of PGPR increases biomass production with immediate effects on root and shoot growth. Therefore, it's important to train specialists that can function successfully under field situations. It is intriguing to use PGPR's multi-strain inoculate with established functions because these structures can improve industry compliance. They offer the capacity to handle several processes, numerous diseases, and transient or local variations. PGPR offers a sustainable approach to boosting plant yield. Plant Growth Promoting Bacteria (PGPB) directly stimulate development by fixing nitrogen, solubilizing DNA, producing growth hormones, and producing an enzyme protease, chitinase and other helpful enzymes like cellulose, pectinase, which fights pathogenic fungi by producing siderophore, -1, 3-glucanase, antibiotics, fluorescent pigments, and cyanide, are examples of the enzymes that break down fungal cells. The rhizosphere of Glycine max contains an abundance of plants that encourage the growth of rhizobacteria (PGPR), but their capacity to penetrate roots and survive in soil is frequently constrained. Phosphate solubilizing bacteria was isolated from the soil in the current study, and its impact on Glycine max germination and plant growth was studied for bio-fertilizer purposes. Its multi-functional properties will draw more attention to the bio-fertilization and biological control of Pseudomonas, and its ability to extract phytohormones and antimicrobial metabolites can be used as bio-fertilizer and biocontrol agents in agricultural and environmental settings.
Manohar Kharatarkar, Sawan Yadav, Shubham Chaudhary, Ashish Kumar, Jitendra Malviya*
To read the full article Download Full Article | Visit Full Article