ISSN: 2229-371X

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article Open Access

STATISTICAL FEATURE EXTRACTION TO CLASSIFY ORAL CANCERS

Abstract

Oral Cancer is the most common cancer found in both men and women. The proposed system segments and classifies oral cancers at an earlier stage. The tumor is detected using Marker Controlled Watershed segmentation. The features extracted using Gray Level Co occurrence Matrix (GLCM) is Energy, Contrast, Entropy, Correlation, Homogeneity. The extracted features are fed into Support Vector Machine (SVM) Classifier to classify the tumor as benign or malignant. The accuracy obtained for the proposed system is 92.5%.

Anuradha.K, Dr. K. Sankaranarayanan

To read the full article Download Full Article | Visit Full Article