e-ISSN:2320-1215 p-ISSN: 2322-0112
Toxicologic Effects of Dichrostachys glomerata
We evaluated the toxicity of aqueous extract of D. glomerata in rat. Acute toxicity was tested in male Wistar rat, which received different doses orally; control groups received water. In the repeated-dose toxicity test, the extract was administered or daily to male and female Wistar rats (3 per groups) at doses of 100, 200, and 400 mg/kg/day/28 days. Their behavior, mortality, weight changes, laboratory tests, and histopathology of organs were evaluated. No rats died during the tests. Hematological and biochemical tests showed few changes, differing somewhat between males and females; the histopathological evaluation indicated no significant changes. In acute toxicity, single oral administration of 2000 mg/kg D. glomerata caused neither toxicological symptoms nor mortality and the LD50 was estimated >5000 mg/kg. In the subchronic oral toxicity, D glomerata induced no phenotypical signs of toxicity during and after treatment. Only a delayed decrease of relative spleen weight in males at the highest dose of 400 mg/kg occurred. High density lipoprotein (HDL) increased significantly in males at 200 mg/kg. Non-persistent increases in alanine aminotransferase activity within normal ranges were noted at all doses in males and females. In animals, D. glomerata has no variation of white blood cells. Aqueous extract of D glomerata caused no toxicity in rats at the smallest dose evaluated (100 mg/kg). No other species was evaluated.
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Haberler
Atsang AKG, Dzeufiet DPD, Dimo T and Kamtchouing
To read the full article Download Full Article | Visit Full Article