ISSN:2321-6212

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Electro-optical synergy on plasmon-exciton co-driven surface catalytic reactions


13th International Conference on Advanced Materials and Nanotechnology

OCTOBER 26-28, 2017 OSAKA, JAPAN

Mengtao Sun

University of Science and Technology Beijing, China

Posters & Accepted Abstracts: Res. Rev. J Mat. Sci

DOI: 10.4172/2321-6212-C1-009

Abstract

The monolayer graphene-Ag nanoparticles hybrids system is fabricated as the electro-optical coordinated controlled substrate of Surface-Enhanced Raman Scattering (SERS) spectroscopy. Plasmon-exciton coupling interactions of this hybrid system are systemically investigated and applied in the field of surface catalytic reactions, manipulated by the electrooptical synergy. Our experimental results demonstrate that plasmon-exciton coupling interaction co-driven surface catalytic reactions can not only be controlled via plasmon-exciton coupling, but also by gate voltages and electric current (or bias voltage). The gate voltage can tune the Density of State (DOS) of hot electrons and electric current can make the hot electrons with higher kinetic energy. Both of them can significantly promote plasmon-exciton co-driven surface catalytic reaction. Our electro-optical device based on plasmon-exciton coupling can be potentially applied in the fields of sensor, catalysis, energy and environment.